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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1290

THE STRUCTURE OF ATRY'S STRESS FUNCTION IN MULTIPLY
CONNECTED REGIONS* .

By Giusippe Grioli

The determination of the stress state in a plane, homogenecus, and
isotropic elastic system with assigned forces -on the boundary and in
the absence of bedy forcesl is known to lead, for the cases of both
plane forces and strains, to the Investigation of a biharmonic function,
namely, the Airy function. '

With the aid of this function, various investigations have been
conducted, particularly on elasticity problems of plane simply or doubly
connected stress systems.

In attempting to establish a systematic treatment of the problem
of elastic equilibrium of a plane homogeneous and isotropic system of
any shape and possessing any order of connectivity, the first step is
to determine the singular terms (absent in a simply connected system)
of Airy function in the most general case of stress and strain; on the
basis of thelr significance, it may be decided which of these terms
remain in various applied cases.

It is therefore proposed to isolate the singularities of the Airy
function for a general plane system and to show how these functions are
‘connected by their mechanical properties with the state of strain and
stress of the elastic system.

*¥'Struttura -della funzione di Airy nei sistemi molteplicemente
connessi." Giornale di Matematiche, Vol. 77, 1947, pp. 119-144.

1In cases of interest in which body forces are present, as, for
example, for constant body forces (gravity forces), the problem may be
reduced to one without these forces by changing the unknown function.
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A special decomposition of the Airy function is therefore given;
for simplicity of presentation, the following two different cases will
be distinguished: :

(a) systems subjected to a plane dislocation and therefore to a
- state of stress with zero forces on the boundary

(b) systems subjected to an external stress of a general type, but
in the absence of dislocation (one-valued displacements)

It is evident that from the two compositions corresponding to cases
(a) and (b) the one is immediately obtained that corresponds to the
general case of a plane system in which the state of deformation is the
resultant of those deformations due to a general external stress and a
plane dislocation.

For a plane dislocation, only the components of the displacement
parallel to the plane of the system are considered herein. Such a dis-
placement results when, after the cuts that decrease the order of con-
nectivity of the system are made, one of the faces of each single cut
is given a displacement relative to the other faces. The displacement
is composed of a translation parallel to the plane of the system and a
rotation about an axis perpendicular to this plane; a certain quantity
of material is then added or subtracted, as the case may bec.

Treatment of the problems of plane dislocations with the aid of the
Airy function seems natural, because the determination of the states of
strain and of stress of a system subjected only to dislocation leads
essentially to the problem of the integration of the equations of elas-
tic equilibrium with assigned forces at the boundary.

In the two decompositions presented, some of the singular parts
figure directly as known elements in that their coefficients may be
expressed in terms of assigned elements characteristic of the state of
stress and strain to which the system is subjected. That is, among the
coefficients of the singular terms, the characteristics of the dis-
location figure in case (a); whereas in case (b), the components of the
resultant forces and the resultant moments of the external stresses
acting on the boundaries of the individual holes are involved.

ZResults on the plane dislocations of a cilrcular ring will be found
in references 1 and 2.
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For the first case, the expression given by the Airy function satis- .

fies the condition of many valuedness of the required displacements from
““the "dislocation considered; the condition of single-valuedness of the
displacements is satisfied in the second case. The analytical problem
that remains to be solved therefore reduces in each case to a boundary
problem similar (but not identical) to that to which simply connected
systems are reduced. :

It was also desired to show that even those coefficients of the
singular terms that are not directly known are expressible in terms of
characteristic elements of the deformation and that their invariance
with respect to certain curves, with reference to which they are defined,
corresponds to mechanical properties common to all continuous systems
at rest, the known properties of the mean stress.

In order to determine the character of the single-valued part of
the Airy function in the two cases considered, a special decomposition
of the biharmonic functions is employed in the manner of Poincaré. This
decomposition was established several years ago by G. Fichera (refer-
ence 3) and was found to be very useful for the purpose.

The many-valued part was determined by direct considerations, but
it is necessarily present if, and only if, the acting forces on each
singular boundary do not: constitute a system in equilibrium.

From the given decomposition for the Airy function, those components
of the displacement and of the rotation from which the singularities
appear are derived without difficulty. It is thus possible to treat
systematically also problems concerning systems in which the displace-
ments as well as the forces are assigned on the boundary or partly the
displacements and partly the forces (mixed problems). Such decomposition
formulas are given subsequently.

For simplicity, a doubly connected system will first be presented;
the results will then be extended to a system of any order of con-
nectivity.

The essential concepts of the theory of elastic dislocations that
is used herein are directly derived from the fundamental investigations

of Vito VolterraS.

3published in various notes in the reports of the R. Accademia dei
Lincei in the years 1905-1906 and collected in one memoir in reference 4.

e
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The author-wishes to express his sincere thanks to Signora Virginia
Volterra, widow of Vito Volterra and to his son Prof. Enrico Volterra
who kindly furnished him with the Italian and French editions of the
papers.

1. Many-Valuedness of Airy Function
Assunme the plane system defined in a region T bounded externally by
the curve Cp, internally by the curve C1 and referred to a pair of

orthogonal axes 0x,0y with origin inside the area enclosed by C;.

_ For the Airy function F(x,y) the following formilas are well
known: '

s s a2

with the usual significance of the symbols.

For any curve 1 the tangent and normal vectors denoted by t and
n, respectively, are oriented so that the pair t,n 1is superposable in
a rigid displacement of the plane on the oriented pair, -x,y.

There is then obtained

n, = & ny = - & (2)

If X,, ¥n denote the components of the specific force corresponding
to any point of 1 and in the oriented direction of n,4 from the for-

mulas
Xn
¥, = Xy ng + Yy 0y (3)

Xx ng + Xy ny

4Specifically, Xn, ¥n refer to the actions that the molecules situ-
ated on the issuing side of the boundary exert upon the molecules on the

other side.
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and from equations (1) and (2) there is immediately obtained

a aF'.
Xn = ds (Sy

d [oF -
In = - ds Ex) (4)

If M, denotes the moment with respect to the third axis of
coordinates 2z, of the vector of components X,,¥n, there follows from
equations (1) to (3) '

My =xYp-yXp= é% [% - X gg -y gg] (5)

In the following discussion, ¢ will denote any closed curve con-
tained in T and inclosing C;. When n is identified with the outer
normal, the positive direction of transversing the curve, that is, the
direction of t, is then such as to leave the area to the left.

By making 1 coinclde with ¢ there is obtained from equations (4)
and (5)5

-

Jo@--x
¢ )
Jo@- ©

-

L//; [% - X %g -y gg] = - M (7)

c .

SFormulas (6) and (7) are in accordance with a property of the Airy

function already brought to light. (See reference 5.)
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where X and Y denote the components of the resultant of the forces
transmitted across the curve c¢ from the interlor toward the exterior
and M is their resultant moment with respect to =z.

In the absence of body forces, however, X,Y,M are the corres-
ponding components of the resultant force and moment of the external
stress acting on the boundary C; of the plane system. It is clearly
shown in equations (6) and (7) that, in the presence of external stress
of a quite general type, the expressions contained under the differ-
ential sign are necessarily many-valued. It follows that the function
F(x,y) and the first derivatives will in general be many-valued, but
second derivatives will be single-valued (on account of their signi-
ficance as stresses).

If the two functions satisfying equations (6) and (7) are denoted
by V¥4, Vg, the function V-V, together with its derivatives, is
necessarily single-valued, which is sufficient to assure that F 1is
of the type '

F(x,y) = o(x,y) + ¥v'(x,y) (8)

with ©(x,y) single-valued and V'(x,y) uniquely determined from
equations (6) and (7).

When 6 = arctan.y/x, the many-valued function -M8/2x (harmonic
and with single-valued derivatives) satisfies equation (7). It is then
found immediately that v'(x,y) corresponds to the product of 6 by
a linear function of x,y, the coefficients of which are determined by
taking into account equations (6) and (7).

There is thus found

M
1 = - B
¥ (X:Y) o 6 (9)
where
Mp =M + yX - x¥ (10)

is the resultant moment with respect to the pole P(x,y) of the
external forces applied to Cy.
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On the basis of equations (8) and (9), the Airy function can now be
given the form

F(x,y) = o(x,y) - %41,% 6 (11)

2. Decomposition of the Single-Valued Part of the Alry Function
It will be very useful in the following discussion to adopt for the

function (x,y) the decomposition formula of Poincard (see paper by
Fichera already referred to) and to write

? (x,¥) =@, (x,5) + o (x,y) + [sz + BX + Yy + 8] log p +

a cos 20 + b sin 26 (12)

The functions cpo(x,y), Cpl(x,y) are biharmonic, the first regular
at all points not external to the region bounded by Co, and the second
regular at all points not internal to the region bounded by C1 and
converging at infinity.

In agreement with the notation adopted in reference 3 referred to,

.
- 1 A
¢Lu,v;c=§ vau_uiﬂl ds+fl:Av—--Angs (13)

e}

where, 1f wu,v are biharmonic in T, the value of cp[u,v; c] does not

depend on the curve c¢, and the constants a, B, v, &, a, and b are
expressed by the formilas

a =®[Cp,l,'c:l S =¢[Co,p2;c I
B=-20[p,x;c a = 1¢[Cp,p cos 20; c:l
Y= - 2¢[cp,y;€| b = %-cﬁ[cp,pz sinuze';c] : (14)
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If ex, ey, exy are the strains, @ the rotation, u,v the com-
ponents of the displacement, following well-known formulas® may be

written:

du

ox

ov
ox

where

where

ex, €

Sexy o

¥’ Sxy

» .
= v/(1-v2)

du
oy

dv
oy

HiE

3

I
[nV]

in the
in the

in the
in the

case
case

case
case

of plane
of plane

of plane
of plane

_ 1%y O

T2 X oy
Oey 1 dexy
X 2 9y

stress
strain

stress
strain

(15)

are connected with Xy, Yy, Xy by the relations’

(16)

(17)

(18)

6(see,

7(see,

for example, reference 6.)

for example, reference 7.)
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In equations (168) to (18), V denotes Poisson's ratio and BE,
Young's modulus.

From equations (1), (15), and (16) there follows immediately

du _k (3%F __ 32F -au_._;ig'aZF_wT
i  E \3y dx2 3y ° T E 9y
dv _  1L+v dF dv _ k (3% d2F
¥~ F Sy O 5;*&:?'*@2 (29)
and
ow _ _ k oAF
ox E dy
% _kar
dy E ox (20)

By denoting now as 1 any line internal to T that unites the
points P, = (x55¥,) and P = (x,y), the following expression may be

written:
f wdn = nw - Mo P "f ndw (21)
1 1

where 17 denotes either of the variables x,y.

Bearing in mind by means of equations (19) to (21), there is
obtained with some transformations
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u(x,Y) = u(xo:yO) - [:ym(x:Y) - Yo a)(onyOﬂ +

k dAF dy oF
5 U/q[?'?ﬁ; - AF aﬁ] ds - (T+1) d (§§>
1 A

v(x,¥) = v(x0,¥0) + l:X w(x,y) - %o ‘D(XOJYO):] +- > (22)

1

+% -f[x%-w%]ds-(7+l)fd<g—§>
1

k dAF
o(x,y) = o(xg,¥,) + T = ds

1 J

4. Airy Function Corresponding to Plane Dislocation in
Doubly Connected Field

With reference to case (a) of the introduction, the system is now
assumed subjected to a state of strain due to a plane dislocation. In
the decomposition of the Airy function defined by equations (10) to (12),
the constants o, B, and ¥ will be shown to represent the three
characteristics of the plane dislocation as determined by the latter
equation.

In order to show this relation, it is first observed that from
equation (22) the necessary and sufficient conditions for the single
valuedness of the components of the displacement and of the rotation
are clearly expressed by
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Llwgﬁg ds =0 w

¢ .

f&%-&%]ds-('rﬂ)fd@—f;):o B (23)
c - &
fEc-d%—_AFé—ixn-]ds+(T+l)fd@—§>=o J |

c c

‘The functions Py (x,¥) and®y (x,y) from their nature8 satisfy equa-
tion (23).

Because the functions of log p and 6 are also harmonic and
moreover because log p 1is single valued with its derivatives and ©
is many valued, but with first derivatives single-valued, the two terms
behave similarly.

It is not difficult to show, by substituting, that also the func-
tions cos 20 and sin 268 satisfy equations (23).

8This is clear for equation (23.1) on the basis of a known thecrem,
if it is assumed that the functions APy and APy are harmoniec. As

regards equation (23.2), it is noted that on the basis of equations (2),

<? %%? - AR %%) ds =y %eg dy - (? %%? - > dx

from which, by taking into account the biharmonic character of F the

expression on the left of this equation is proved an exact differential.
The left member of equation (23.2) is of the form of integrals of exact
differentials. From the fact that ®p has for its field of regularity

the region enclosed by Cg, it is then concluded that the left side of
equation (23.2) vanishes for F= ®p- The same result is obtained for
F= @, 1if it is considered that its field of regularity is composed of
all the points of the plane not internal to the region enclosed by Cq-
Similar considerations apply to equation (23.3). ' '
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Because of the properties of the terms that enter in the expres-
sion of the Airy function (see equations (10) to (12)), only those '
contained in the expression

1
F*(x,y):(ap2+Bx+-fy) logp+§[xY—yX___Ie (24)

give rise to many-valued displacements.

The increments received by u(x,y), v(x,y), and o(x,y) are
denoted by u¥%, v¥, and W¥*, respectively. When a complete circuit .
(started from the point of coordinates x,y) is effected about the
hole, equations (22) that Ew*/k, E(u* + yo*)/k, -E(v* - x0™%)/k
agree with the values assumed by the first members of equation (23)
for F(x,y) = F*(x,7).

If this result is taken into account, it is found from equa-
tions (23) and (24) that

— \

k l-7
*'—'— — -
u* = erEI_écay+27 P {I

k 1-7
v Z:tEE;cnx+ZB 5 }{I > (25)
* k
a)=8nEcx. Y,

Because a state of strain with surface forces (except for body
forces) at the boundaries corresponds to each dislocation, there must
be set X =Y = 0. From equations (25) the result is then obtained:-
The three characteristics of the plane dislocation (constants of the
cut). are given by

-4 =7
k
41(E'B

- 8t = a
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The flrst two characteristics correspond to parallel fissures and the
thlrd to a radial fissure®.

These fissures are assumed to be assigned on the basis of the par-
ticular dislocation considered so that, when they are denoted by 1,
m, and r, the following expression is obtained: Corresponding to
a general plane dislocation of characteristics 1, m, and r the
Airy function in a doubly connected field is capable of the decompo-
sition

E- r 2
F = + + = |- + mx - 1 lo + -
%o +P1 v 5 P Y] gp
5 log p + a cos 20 + b sin 20 (26)

The unknown part F="F -F" of the right-hand side of equa-
tion (26) is uniquely determined by the condition that the forces on
the complete boundary of the plane system are zero.

Explicitly on the basis of equation (4) this condition is given
by the equations

gE = = éE: + const
X ox )
on CO and C;
™ *
g—F = - %F— + const.
Y N

9Tt is evident that these definitions give an immediate generaliza-
tion of those used in the work of V. Volterra in the case of a field
having the form of a circular ring. That is, the dislocation will be
said to correspond to a uniform fissure when the displacement that
generates 1t is a translation and to a radial fissure when the displace~
ment is a rotation.
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5. Airy Function in the Case of Single-Valued Displacements
in Doubly Connected Field

A1l the elements are now at hand for determining the structure of
the Airy function in the absence of dislocations corresponding to any
external stress. The coefficients o, B, and 1 will now also be
determined. In fact, the conditions of single-valuedness in equa-
tion (23), which are more synthetically expressed by

u* = 0, v =0, o*=0
on the basis of equation (25) lead to
a =0, ¥ = (1-7)¥/4x, B = (1-T)X/4x
From these relations and from equations (10) to (12), the following
result is obtalined: The Airy function in the case of single-valued

displacements in a doubly connected field is capable of the decomposi-
tion

F=Py+®; + 8 log p + acos 20 +b sin 26 + %;.{ (X x +

Yy)

1 -7
lo - M, 0 27
> gp D } ( )

Remark. It is sufficient to glance at equation (27) in order to
derive the necessary and sufficient condition that the Airy function
of a doubly connected system free from restraints does not depend, in
the absence of dislocations, on the elastic constants of the system
and that the external forees applied at the boundary of the hole have
a zero resultant. The same is naturally true for the stresses.

6. Structure of the Airy Function in Multiply Connected Systems

The preceding considerations will now be extended to the case of
a plane system of any number of connections. The doubly connected
system already considered will be referred to g pair of parallel axes
coinciding with those already adopted but having their origin at a
general point of coordinates -E:‘ﬂ: which may be external to the
whole. It 1s evident that the previously derived formulas, if referred
to moving axes (denoted by x,y), are written by putting in place of
X,y, respectively, x-f, y-7.
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In particular the Airy function will have the expre551on (see
equatlons (lO) to (12))

=% + @ + E; o*2 + B (x-8) + 7" (y-n) + 5ﬁ] log p" + &% cos 20 +

* 1 . o : :
b* sin 26 - 2= Mp 6 (28)

where p* is the distance between the points of coordinate x,y and

t£,1 and 6 is arctan L-1. It should be remarked that the point of
x- :

coordinates g,n is interior to the hole. The constants a*, g*, y*,

' 8%, a¥*, and b* are defined by the same equations (14) except that

x-f, y-1 are substituted for x and y and p* for op.

Eguation (28) gives a decomposition of the Airy function referred
to a pair of axes x,y completely arbitrary but with §,n having the
significance of coordinates of a point @ within the hole; this equa-~
tion is generalized to the case of plane systems with any order of
connectivity.

The region of definition of the Airy function will now be con-
sidered as a region T bounded by the curve Cn and having n holes
bounded by the curves Cy, C2, . . . Cp; €4, 703 (L =1,2, . . . n)
will be taken as the coordinates of a point Q; within the hole
bounded by €3 (1 = 1,2, . . . n).

Setting
= (x -t )%+ (y - 0y)?
6; = arctan L~ N1
x -t

the Airy function in this region, by evident géneralization of equa-
tion (28), has the following form
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n n o .

2 .

F=q’o+ Z\CP_-;_"' z E['i %y + By (X-Ei) + 7 (y-T]i) +8j;| log py +
i=1 i=1

. n
; 1 (1) _

a; cos zei + by sin 29i "o Z Mp 85 (29)
i=1 -

In this equation, ®y 1is biharmonic and is regular in the manifold
bounded by Cp; @5 (i =1,2, . . . n) is biharmonlc outside the hole

bounded by C€i (i = 1,2, . . . n) and converges at infinity.

If X5, Y4 ( i=1,2, .. .n) are the components of the result-

ant of the external forces applied at the boundary of the hole bounded
by C4 and Mj is their resultant moment with respect to the axis
oriented as z through gy, Mp(i) = (y-n1)X; - (x-£1)Y; + Mj denotes
the resultant moment applied at Cj with respect to the axis oriented
as z through the point P = (x,y). The constants aj, Bi, Yi, Oi,
aj, and bj are determined by the formulas

a =@ [CP, 1; cj;l

Bi = - 2¢ Ep, X—Ei, CJ‘]

Yi = - 2¢ Ep; Y-14, cj:’ .
30

51 =¢ EP, Dzii Cj_:l > (30)

©
1]

1

o
i
i

1

where @ denotes the single-valued part of the Airy function.
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It will now be shown that in equation (29) the coeffic1entlo of
log p; does not depend on ii, ni, (1 =1,2, . . . n).

Because of the llnearity of the operator ¢ the follow1ng expres-
sion may be written, for any value of i

Bi=-2¢[cp,x;ci]+251¢[cp,l;Ci:]=i_3'i+2ai§i (31)

where
By =-20[9 x5 057 | (32)
Similarly -
Ty =Ty *2a; 0 (33)
with
Ti=-2%[9 v; cf] . (34)
Moreover |

By =@ EP, '52; ci:l + (Eiz + ni2)¢ l:cp, 1; ci:l -

2 €9 Ep, X; ci_] -2mn;9 [CP, Yis ci] (35)
where P denotes the distance from the origin of any point P = (x,y).

From equations (30.1), (32), (34), and (35), the following expres-
sion is immediately obtained

_ 2 2. - =
8y =05 +ag (& + 13 ) +B; & + T 0y (36)

105 similer dbservatlon can evidently be made with regard to the
coefficient of log p* in equation (28).
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with ’
3 =0 [CP,. 32; ch | (37)

On the basis of equations (31), (33), and (36), the following equa-
tion can be written:

ay ps% 4 By (x-b5) + 75 (y-n3) + 83 =y P+ Py x+Tyy+5; (38)

Equation (29) can therefore be written as

n
F—Cpo+zq71 Z{Eip+le+YiY+8]logpi+aiCOSZQi'*'
i=1

. 1 i
by sin 26; - ﬁmp( ) 91} , (39)

The meaning of oy, By, ¥4 remains to be determined. For this
purpose, ug*, vg* wg* (s =1,2, . . ., n) denote the increments
received by u, v, ® when a complete turn is made sbout the hole
bounded by Cg (s =1, 2, . . ., n) starting from the point P = (x,y).
It is evident that, of the terms of the expression equation (29) of the
Airy function, only those of index s contained in the various sums
can make a nonzero contribution to the formation ug*, vg*, wg®
(s =1,2, . . ., n), because the others are regular with all the deriv-
atives in the region bounded by Cg (s = 1,2, . . . , n).

Substantially, the same relation holds ture as in a double con-

nected system and the expressions of ug®¥ vs"‘, ws"‘ are obtained from
those of u*, v* o® (equation (25)) by simply substituting ag, Bs,
Yss Xg, ¥Yg for a, B, v, X, Y, respectively, and =x-f4, y-ng for

X,¥.

T~
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us* - ax %-[% as (y-ng) + 2 ¥g - J'é;T Yé]

¥ = 2n % {% ag (x-£5) + 2 Bg - 1-5;7 Xé], (s = 1,2, . « ., n)>

| _ (40
It is then found that uS‘Q vé*, ws* do not depend on tHe points

(§SJ s) .

In fact, on the basis of equations (31) and (33), equations (40)
may be written

us*=-2ﬂ%l:4cx.sy+275—-l—2_ﬁ—7-1'§__ls w

V’S*=21\:E1£E=G.SX+2§S‘12-IITXS:]’ (S=l)2’ L )n)> (41)

*
Wg 8w

Qg

HiF

J

from which immediately follows the result: If 14, m;, and r; are

the characteristics of a plane dislocation corresponding to a cut that
goes from C, to Cj (i=1,2, ..., n),

e = i) N
= -2 1
i Bak 1
= E
= o I
Pi=gm™ . (42)
. =-_E
L ixk < Y,

It is also clear that the Eﬁ, ¥; correspond to parallel fissures
and the a3 +to radial fissures. ' : '



20 ' NACA ™ 1290

From equations (38) and (42) the final result is thus obtained:
The structure of the Airy function corresponding to a general plane
dislocation in an (n+l)-fold connected field is defined by the
formula:

i=1

n
s —2
F = + : 4—_§t} £ [} Ei + X =13 :] +
v Syer S [ R ema

n
51} log Py + z [ai cos 284 + by sin 291_—_‘
i=1

In order that the displacements be single-valued, it is evidently
necessary and sufficient that

w¥=0 (i =1,2, . .., n)
(Di* = O

From equation (41): The necessary and sufficient condition for
the single~valuedness of the displacement in an (n+l)-fold connected
plane system is that the following equalities be satisfied:

a =0 h

- 1 -T 5 .

B: 41[ Xi ‘(l=l,2, - e o ,n)
= 1 -T

T = Ix pE1 J

and therefore the Airy function in the absence of dislocations in an
(n+1)-fold connected field is capable of the decompositiontt

1lprom (43) there clearly results the condition (analogous to that
expressed in the remark of section 5) of the independence of F on the
elastic constants of the system.

TN
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n :
F = qu + J_Z;)LCPl i—l'[si log Py + 84 ,c,:os_,z,ei.,* b sin zeﬂ +

n
g; zz: {(Xl x + Yi Y)

log Py - Mp( 1) 61} (43)

i=1 '

Remark. Equation (42) evidently also gives the expression of the
Airy function in the presence of forces or moments concentrated at
1nterior points of the plane system. If, for example, at the point

(g*,n*) there acts a concentrated stress (concentrated force or
moment or both systems), one of the terms of the sum in equations (42)
corresponds to it. If this term of the sum is, for example, of index 1,
P71 is biharmonic at the exterior of each circle of center Q, and @,
converges at infinity, then Si, ayj, by are always defined by equa-
tions (37), (30.5), and (30.6), respectively. In these relations, c3
is any circumference of center Q iInterior to Cp and such as to leave
the regions bounded by Cj, Cp, . . . on the outside; X,, Yq, Mp(l
denote the components of the resultant of the concentrated stress at Q
and the resultant moment with respect to the straight line oriented as
z through P = (x,y).

7. Mechanical Significanee of Coefficients &, a, b

As evident from the heading of the present section, the case of a
doubly connected field is considered for simplicity, but the extension
to the case of any number of connections will be evident.

The coefficients &, a, b are not determined, as are a, B8,
and ¥, by the condition of the problem; they nevertheless have a
mechanical significance that is now given.

It will be shown that these coefficients are expressed in terms of
chargcteristic elements of the deformation and of the stress such as
the rotation, the coefficient of surface dilatation, and (only for the
coefficient &, however) the astatic coordinates of the external stress
acting on one of the boundaries of the plane system.
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It is first necessary to establish several preliminary formulas.
We set '

ok 1 M
F =g xy-yx-mjoe=--3Le (40)

5** =0 [F**, 0%; ¢]

a** = %—.Q Er‘""*, p2 cos 20; c] > (45)
b** = %d’ l___F'*, o2 sin 26; c:l J

From equations (44) and (45), if equation (13) is taken into account,
there is cbtained

6‘*=21—ﬂ|:y0'1'+x0)§ (46)

a* = p** =0 (47)

where Xn, Yo denote the eoordinates of the point Py from which the
path on ¢ begins.

On the basis of equations (10), (11), (14), (44), and (45), and

when the linearity of the operator @ is taken into account, the fol-
lowing relation may be written:

5 =@ EF, 02; c] - a** (48)

where as when equation (47) is also accounted for,

a=%;¢ l:F, P2 cos 20; cj
(49)

b=£¢l:F, p2 sin 26; g__l
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Taking into account equations (2),

f%ds:f@Fdx-a—Fq):-fdx%g- -aa{-)+
(o] ’ (]
f(d—-' z 6o

From equation (50), on the basis of equations (4) and (6) there is
immediately obtained

f%ds:xox+on+f(xXn+yYn)ds (51)
[

c

When two of the astatic coordinates (which two are required is
evident) of the stress acting across c¢ are denoted by ayy and Byys

equation (51) can be (see reference 8) written (see also equation (46))

dF _ * ok
L/qaz ds = 21 8" + Ay, + ayy (52)

(&

From equation (22.3) there is immediately derived

E .
T o= 7—ds (53)

and also

AF=k—(—l_'T)-D : .o - (54)
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where D denotes the divergence of the displacement u,v (cbefficient
" of surface dilatation).

Mechanical significance of d and of its iInvariance with respect

to c. - When equation (48) is expressed explicitly, and on the basis of
equation (13), the following expression may be written:

| 2
1 2 4AF drF ap -
s_g j;—dnds+4 o ds /;F—i ds{ - B

[« Cc

Taking into account equations (52) to (54),

2
E 2 1 dap 1
d = — P dw - ~— D=2X_ds)+ — (a + a 55
8k f -7 f dn 21 (axx + ayy) (55)
[¢] c

or, taking into account equations (52) and (54)

| 2
E 2 dp do 1
- p2 @ gg . [ D&% gel 4 L ¥ 56
Bx & (1-7) f @ f an 7 (o +ayy)  (59)
C .

c

Equations (55) and (56) give the required expressions of & as a
function of the characteristic elements of the strain and the stresslZ,

A closed curve c¢' of the same type as ¢ 1s now consldered and
the area of the band bounded by ¢ and c¢' 1is denoted by Age'.
Also dencted by axx, Oyy are the two astatic coordinates of the
stress that acts on the band across the curves c¢ and c¢' and is
defined by

127f the state of strain is due to a simple plane dislocation on one
of the boundaries, then ayy = Qyy = O and it is sufficient to eval-

uate ©® corresponding to oy, oOr Oy to obtain a simpler expression
than equations (55) or (56).
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Y
—Jxxnds-fxxnds

axx -—
- _ (57)
3,y_y, = Jy Yn ds -~ yYn ds
_ e

When &' denotes the expression of & relétive to e¢', there is
obtained from equations (56) and (57)

E oD .
8 - §' = BE T b/lz (gg-nx * 5 ny> ds - 2\}[; (xn, +y ny) ds -
e c

1
b/;z %% ny + %g n¥> ds + 2 u/'\D (xng +y ny) dsp + e (ogx + ayy)
c! '

(58)

When the transformation formula of line integrals into surface
integrals is applied to equation (58) and the harmonic character of D
is considered

E 1
5 - B! = EE—E—(?:IT\J[ D 4 Ager + 5o (axx + “yy) (59)
Acc'

If T denotes the mean value of the linear invariant of the
stress I and the independence of & on ¢ in Accx is accounted

for, there is derived from equations (54) and (59)'

Tooxxt Yy
- Accl
that is, the invariance of & with respect to ¢ expresses the prop-

erty of the mean stress that assigns the mean value of the linear
invariant of the stressl3.

L3por the properties of the mean of the stress mentioned above see
reference 9, :
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Slgnlflcance of a, b and of their invariance with respect to ec. -
On the basis of equations (13) and (49),

o
N R
2

bk {fm%d o 8

o
[

> (60)

{

[&] C J

When equations (53) and (54) are considered, equations (60) reduce to

\ (2 - 32) ]
_ B 2 2 1 a(x® -y
a8 = g (x*-y°) d» - T o D ds
C [
e f > (61)
_E 1 [axy
PrEE |V T
C 64
J
or
f 2 2 )
_ E 2_,2y 4D a(x” - y°)
8= ey | J (V) g ds - I D ds
C C
} (62)
E 4D dxy
BrE(L - T) V/:‘ya'ﬁds'fandS
C C
p

With the aid of equations (61) and (62), & and b are thus
expressed as functions of the rotation and of the coefficient of sur-
face dilatation. It is also found (from equations (60)) that the
invariance of a,b with respect to c¢ 1s derived from a known prop-

erty of harmonic functions.

On the besis of equation (1), the follow1ng expression may be
written:

‘ oY, X Xy Xy
f“xﬁ) " o = f“(m) [ x - —a%) ne + \y - T) ny] as
C c

(63)
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;;
!
1

where V(x,y) denotes any integrable function of x,y. From equa-
tion (63) there is obtained :

f f 2% xy 3y
dAF anF ¥
Vg eV g ds - ay - —& *
c ct _ _
oy .
O 3y Xx ___‘l’ éz_‘l’ ox, ¥ _laa 4
’ sy yz Y % Ey Hec!
Ager
%k, 3%x .
y y
f \lrl:ayz t 2 3y |8 Ace: (64)
At

Taking into account that equation of congruence of Saint-Venant
which remains in effect in the case of plane systems expressed in
terms of the components of the stress it is seen that the last integral
of the second member of equation (64) is zero.

From equation (64) there is then obtained

cf_ds-f_d f[( )
<>JJ[(>

aqf :l a 11: a% a%
(\ Xy = ds -~ L‘/\ + Yy sz -ZXy. 3% 5y d A.an

(65)

By taking into account equations (1) and (3), the following expression
is obtained from equations (60) and (65) for ¥ = x© - y@




28 | NACA TM 1290

a - a' =-é];1t-{ f(yYn - IX.D_) ds _\/'\(yYn - XXn) ds - f (Yy = Xx) dAcc'
c e

cc'

1340

(66)
where evidently &a' denotes the expression of a 1in correspondence with
ct.

By taking into account equation (57) and denoting by g, ?y the

mean values of Xi, Yy in A,.:, the following expression may be

derived from the invariasnce of & and from equation (66):
X, - ¥, = I
x " Iy Bogr

from which it 1s seen that the invariance of a with respect to ¢
expresses one of the properties of the mean stress.

From equations (60) and (65), for ¥ = xy there is obtained, on
the basis of equations (1) and (3)

b-b'=.81—3f{ -f(xYn+yX.n) ds+f(xYn+an) ds+2nydAcc,}

Acc'

67
where the meaning of bf is clear. (67)

The astatic coordinate of diverse indices of the stress acting on
the band bounded by c,c' across its boundaries is denoted by axy

and the mean value of X.y in A,.:+ 1is denoted by fyu From the invar-

iance of b and from equation (67) there is immediately obtained, if
the second fundamental equations of statics are taken into account,

cct

It is therefore seen that the invariance of b with respect to ¢
expresses that property of the mean stress which assigns the mean value

of Xy .
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Remark. If ¢ 1s assumed to coinclde with a circumferencel4 of
center O and of radius R, equation (55) becomes

2n
_ERE| ok _ 2 1 (68)
5 = sl O - 1_1.6[\]) de] + 5 (axx + a-yy)

and presents o as a linear combination of the increment of the rota-
tion, because of & turn about the hole, of the mean value D of D on
the circumference c¢ and of two astatic coordinates. In particular if
w*¥ = 0 equation (68) becomes

B® DE
®=-Z EIT-T - %x - %y (69)

and: In the absence of dislocations and in the presence of disloca-
tions that permit single-valued rotation (o = 0), ® is equal to a
linear combination of the mean value of the cocefficient of surface
dilatation along each circumference of center 0O and of two of the
astatic coordinates of the stress that is transmitted across the cir-
cumference, . This linear combinaticn is therefore invarient with respect
to the circumference.

In particular for a plane system with circular hole subject to a
dislocation that leaves the rotation single-valued (a = 0), it is
sufficient from the fact that ¢ 1is the circumference which bounds the
hole and that correspondingly ayy = 8yy = 0 to derive the result that

® expresses, except for an obvious coefficient, the mean value on c¢
of the surface dilatation.

The same relation holds in the absence of dislocation, provided
the external stress applied at the boundary of the hold satisfies the
condition ayy, = 8yy = 0 (in particular if the hole is free from exter-
nal stress).

;4Naturally for the validity of the remark it is required that
there exist & circumference entirely internal to T. If this is not the
case, the biharmonic function ¥ does not lose significance in a region
T' comprising T in which circumferences can be drawn; the remark
retains its validity provided the elastic system is considered extended
in T°*.
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8. General Expressions of Components of Displacément
in Doubly Connected Field.

From the preceding developments, it is easy to obtain the expres-
sions for the componénts u,v of the displacement. There is thus the
possibility of considering problems in which the displacements are
assigned on the boundary or mixed problems.

For simplicity, the case of a doubly connected system will be con-
sidered, but it is not difficult to extend the results obtained to sys-
tems of any order of connectivity.

The values assumed by u,v are denoted by u,v when, in equa-
tions (26) and (27), ¥y,P; are assumed to be zero in addition to 3B,

a, and b. The expressions of u,v are obtained from equation (22) by
substituting in them F - Py =P - 5 logp -acos 20 -b sin 26 in

place of F. When a rigid displacement is singled out and expres-
sion (26) is assumed for F itself, there is obtained in case (a):

E:L{Z[@+%sin29] +m[l_;.r.logp-.]%‘_rcos 29+_]_-_;_T] +W

rp[@ sin9+%coselogp+1--—zlcos 9]}

- 1 T-1 T+1 T-1 T+1 .,
v_é?{'[,[—z——logp—T00829+—4:—]+m[6-—4—81n29] +

i - T
rp I:- @ cos 9+TTl sinelogp+—z—lsin 9]}

and in case (b) when the expression (27) is assumed for F,
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\
L {x [2(12-27-3) log o + (1+7)% cos 260 + (1-T)% - 2(3+1)] +

U S 8xE |
- . sin 6]
Y(1+T)* sin 26 - 4(1+T) M — 5
v = §§f {.X(I+T)2 sin 260 + Y [?(TZ-ZT-S) log p - (1+T)% cos 20 + f

(1-1)2 - 2(3+T)] + 4(1+7) M.-c—of’)—a }

Next, if u',v' denote the values assumed by u,v when F 1is
identified with & log p + a cos 20 + b sin 28, there is obtained on
the basis of equation (22) :

w' =k {-5(1+T)COB 6+4a cos O(cos? 6-T gin? 9)+2'b[(3+T)cos2 6+(1~T)gin? 6]sin 9}

L
p
L
E [}

E
v' = & {-5(1+T)Bin 0+4a min 0(Tcos? 6-sin? 6)+2b [ (3+T)ein? 6+(1-T)cos? 6]cos e}

Finally, if wu'',v'!' denote the values assumed by u,v when for F
there is assumed @, + Py,

u=u+u' +u'’
V=Y 4+ v+ v
where u'’,v'! are given by equation (22) for F = Oy + P

It may be useful in many problems to assume for ¥, and P a

speclial series expansion 1n trigonometric binomiels. By known theorems,
the biharmonic functions @5, ®; can be developed into uniformly con-

verging series, the first at each point at infinity, and the second for
>0
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S (70)

1 o Tz1  Tzp
Py~ ZE: ot [Tap + 0% Ty ]+ 5+ 02

n=3 ) J

where

T cos né + b, sin nd (1 = 1,2,3,4;n = 0,1,...) (71)

in = %in
In the series (70.2), the term T4o of the type a cos 20+b sin 20,

already separately considered, has been suppressed. Tt is sufficient
to substitute equation (70) into equation (22) to obtain

3 n=2,3,... w
" = u" + u" + * u"
- 20 11 in
1=1 1=1,...4
? (72)
3 n=2,3,...
v = V" + " + * V"
- 20 il in
i=1 i=1,.. .4
y,

with



£

NACA TM 1290

33

w'in = L (T+1)pn-1 E:L Tin €Os 6 - sin 6 dTén]
. o (n=1,2,...)
v, =-£ (tT41)p1{n T. sin 0 + cos 6 2 T1n ] | 7
1n E N i ) d o
r 1 — k 4 . ! TZn .
uvZn =3 pn+l {j[;-+(T+li151n.9. o " @—(n+2)(7+1)] TppcOS 6
b, _ _
Vop = - % pp+l {[ +('r+l)]cos 9 ——al [4../(n+z)('r+1):| Tz sin 6.
’ L' ) (n= 041)2,-'0) ’ %(75)
= X -(n+l d Tzy
u"3n = r (T+l)p ( ) n TBnCOS @ + sin 6 -'—dT
(n=1,2,...)
n. = K (141) -0 n 7. sin o 0 a Tz,
v'zp =5 (T+l)e n Tz,sin 6 - cos R
( arT
1 k - 4 - 4in
u'4n =z pl n { [. £+(’r+l):151n 2] 0 +E1=-(2-n) (T+l)]cos & Typ
7 v =Bl [ (ri) Los 0 £ +[2-(2-n)(T+1)]sin 6 T
4n T E n d o6 4n
N (n = 3,4,...) y

The asterisk on the summation signs denote that the term of index 4,2
is not considered. It ig_necessary moreover to consider that for n =20

the terms that contain _EEQ are suppressed in equation (73).

Translated by S. Reiss
National Advisory Committee
for Aeronsutics.
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